CKIP-1 inhibits cardiac hypertrophy by regulating class II histone deacetylase phosphorylation through recruiting PP2A.
نویسندگان
چکیده
BACKGROUND Sustained cardiac pressure overload-induced hypertrophy and pathological remodeling frequently leads to heart failure. Casein kinase-2 interacting protein-1 (CKIP-1) has been identified to be an important regulator of cell proliferation, differentiation, and apoptosis. However, the physiological role of CKIP-1 in the heart is unknown. METHODS AND RESULTS The results of echocardiography and histology demonstrate that CKIP-1-deficient mice exhibit spontaneous cardiac hypertrophy with aging and hypersensitivity to pressure overload-induced pathological cardiac hypertrophy, as well. Transgenic mice with cardiac-specific overexpression of CKIP-1 showed resistance to cardiac hypertrophy in response to pressure overload. The results of GST pull-down and coimmunoprecipitation assays showed the interaction between CKIP-1 and histone deacetylase 4 (HDAC4), through which they synergistically inhibited transcriptional activity of myocyte-specific enhancer factor 2C. By directly interacting with the catalytic subunit of phosphatase 2A, CKIP-1 overexpression enhanced the binding of catalytic subunit of phosphatase-2A to HDAC4 and promoted HDAC4 dephosphorylation. CONCLUSIONS CKIP-1 was found to be an inhibitor of cardiac hypertrophy by upregulating the dephosphorylation of HDAC4 through the recruitment of protein phosphatase 2A. These results demonstrated a unique function of CKIP-1, by which it suppresses cardiac hypertrophy through its capacity to regulate HDAC4 dephosphorylation and fetal cardiac genes expression.
منابع مشابه
A Redox-Dependent Pathway for Regulating Class II HDACs and Cardiac Hypertrophy
Thioredoxin 1 (Trx1) facilitates the reduction of signaling molecules and transcription factors by cysteine thiol-disulfide exchange, thereby regulating cell growth and death. Here we studied the molecular mechanism by which Trx1 attenuates cardiac hypertrophy. Trx1 upregulates DnaJb5, a heat shock protein 40, and forms a multiple-protein complex with DnaJb5 and class II histone deacetylases (H...
متن کاملb-Adrenergic Stimulation Induces Histone Deacetylase 5 (HDAC5) Nuclear Accumulation in Cardiomyocytes by B55a-PP2A-Mediated Dephosphorylation
Background-—Class IIa histone deacetylase (HDAC) isoforms such as HDAC5 are critical signal-responsive repressors of maladaptive cardiomyocyte hypertrophy, through nuclear interactions with transcription factors including myocyte enhancer factor-2. b-Adrenoceptor (b-AR) stimulation, a signal of fundamental importance in regulating cardiac function, has been proposed to induce both phosphorylati...
متن کاملEstrogen regulates histone deacetylases to prevent cardiac hypertrophy
The development and progression of cardiac hypertrophy often leads to heart failure and death, and important modulators of hypertrophy include the histone deacetylase proteins (HDACs). Estrogen inhibits cardiac hypertrophy and progression in animal models and humans. We therefore investigated the influence of 17-β-estradiol on the production, localization, and functions of prohypertrophic (clas...
متن کاملβ‐Adrenergic Stimulation Induces Histone Deacetylase 5 (HDAC5) Nuclear Accumulation in Cardiomyocytes by B55α‐PP2A‐Mediated Dephosphorylation
BACKGROUND Class IIa histone deacetylase (HDAC) isoforms such as HDAC5 are critical signal-responsive repressors of maladaptive cardiomyocyte hypertrophy, through nuclear interactions with transcription factors including myocyte enhancer factor-2. β-Adrenoceptor (β-AR) stimulation, a signal of fundamental importance in regulating cardiac function, has been proposed to induce both phosphorylatio...
متن کاملRole of histone deacetylase 2 and its posttranslational modifications in cardiac hypertrophy
Cardiac hypertrophy is a form of global remodeling, although the initial step seems to be an adaptation to increased hemodynamic demands. The characteristics of cardiac hypertrophy include the functional reactivation of the arrested fetal gene program, where histone deacetylases (HDACs) are closely linked in the development of the process. To date, mammalian HDACs are divided into four classes:...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 126 25 شماره
صفحات -
تاریخ انتشار 2012